If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-45x+400=0
a = 1; b = -45; c = +400;
Δ = b2-4ac
Δ = -452-4·1·400
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{17}}{2*1}=\frac{45-5\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{17}}{2*1}=\frac{45+5\sqrt{17}}{2} $
| 7x-3=9-x | | 0.25x-6=0.5(x-8) | | 0.2-0.05x=0.2x-0.1 | | 7-x/6=3-(x-4) | | 1/2(x+9)-2=4 | | 100=5(4d-4) | | 9x8=8× | | x/3+6=1/6 | | 5(4t-5)=7 | | p2+7p+12=0 | | 10000=x-0.2x | | 0.5c=13 | | 2/w-4=7 | | 2x-3x^2=-1 | | 3(5x-1)+3(x+2)=3(x+6)-(x+5) | | 6x+10=-74 | | -3+6g=11-3g | | 13+7x=32 | | 5=2.4x^2 | | 3/4c+1/2c=6/7 | | 4-12K-9+8k=4 | | 10x+20=156+36 | | 2(x-5)=7x-4-x | | 7/4+1/5x-3/2=-4/5x | | 5/3u=10 | | 10=5/3u | | 3x-10=10-3x | | 3x^+4=9x^-32 | | (x+8)^2−2=0 | | 3x^2+4=9x2^-32 | | -1/2x-15=35 | | 12n*24=0 |